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Dynamics of the spin-boson model in the adiabatic 
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Abstract We study the dynamics of the spin-boson model using a simple mea-field-type 
approximation which Vents phonons classically. This simple approximation allows us to cover 
the whole range of system parameters and to determine boundaries between regimes wilh 
different behaviours. The validity of the model is tested by its ability to recover most of 
the previous results. The results are also c o m p d  with the mults of some more sophisticated 
variational approaches. 

1. Introduction 

A variety of important phenomena in some physical [l-181, chemical [19-241 and biological 
[25, 261 systems may be efficiently represented as the motion of a single particle between two 
equivalent minima. The simplest model which still contains most of the relevant information 
necessary for understanding the dynamics of such systems consists of a two-level system 
(ns) coupled to a collection of harmonic oscillators simulating the influence of a dissipative 
environment: 

Disregarding other applications, we shall restrict ourselves to the case of a ‘particle’ (spin, 
defect, electron, exciton, etc) in the crystal, where the lattice vibrations take over the role 
of the bath. Then each particular case of interest can be specified either by the choice 
of the explicit q-dependence of coupling parameter A, and phonon frequency U,, or by 
the particular choice of spectral density of states which is connected to the spin-phonon 
coupling as follows: I ( @ )  = E, jh,l*S(w - w9). As usual, A denotes the bare tunnelling 

are the Pauli matrices. 
Depending on the ratio of the basic physical parameters (A% is the phonon band 

width and .EB = E, 11912/iiw9 is the lattice relaxation energy or small polaron binding 
energy as usually referred to  in the theory of self-trapping [27]) the system can display 
regimes with substantially different physical behaviours. Thus in the weak-coupling (WC) 
regime the mean position of the ‘particle’ follows an equation of motion identical with 
that of a damped harmonic oscillator [9,21,22], while in the strong-coupling (sc) regime a 
significant reduction in the tunnelling frequency A,a appears because of phonon dressing 
and the system exhibits a pronounced tendency towards localization 11,s. 10,12,27-29]. 

energy, a, t (a9) is the creation (annihilation) operator of phonon quanta while ui (i = x, y ,  z )  
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The magnitude as well as the character of the dependence of Ae# on the coupling constant 
S (cx &/hoe)  is governed by the value of the adiabatic parameter B (E Z A / h m )  and 
the particular type of spin-phonon coupling [29]. Knowledge of the behaviour of Aen as a 
function of S and B is of particular interest for understanding the nature of the localization 
transition. In the present paper we shall not consider this problem and we shall concentrate 
on the system dynamics employing the (semi)classical approximation for phonons while 
treating the influence of quantum fluctuations perturbatively. 

Bearing in mind that the spin-phonon system has been successfully examined by 
means of sophisticated methods such as path integral (PI) techniques [l, 14-16] and the 
renormalization group (RG) approach [I, 17,181, the above-proposed typical mean-field (m) 
approach could look like a step backwards. That is, since the MFapproximation was applied 
to the spin-boson (Se) model a long time ago [lo, 111, it  is not very clear, at first sight, 
what new results can be obtained by now employing such an approximation. 

Let us recall first that the abovementioned RG and PI approaches were mainly related 
to the phenomenon of macroscopic quantum tunnelling [ 1,16181 where non-adiabaticity 
( A  (< Ems) has been implicitly assumed That is, the mapping of a realistic tunnelling 
system, e.g. magnetic flux trapped in an RF SQUID ring, to the spin-phonon model is rigorous 
in that case only. 

On the other hand, in  the number of so-called ‘intrinsically’ IUS, parameters do not 
satisfy that condition. On the contrary, their values could lie in  any particular region of the 
parameter space of the system, sometimes approaching extremely adiabatic and SC limits. 
In the existing literature, especially in the context of macroscopic quantum phenomena, 
the problem of the dynamics of the SB model under these conditions has not attracted any 
particular attention; so we find it interesting to deal with it now. For that purpose, the 
above-proposed application of the MF theory is a natural choice. That is, according to 
the previous studies I6.10, 11, 161 of the equilibrium (thermodynamic) properties of the SB 
model, the MF approach represents a satisfactory theoretical framework for that purpose in 
the highly adiabatic limit (A >>hoe). Furthermore, in the SC limit we expect a significant 
manifestation of the (semi) classical behaviour of the phonon field. According to the non- 
conservation of the number of phonons, and disregarding their temperature excitation, the 
level of excitation of each phonon mode is exclusively influenced by the spin-phonon 
interaction. Consequently they become macroscopically (classically) occupied in the sc 
limit. Under these conditions, the presence of an excess particle may cause a local distortion 
of the surrounding lattice which, in turn, creates a potential well for that particle in which 
it can be trapped. For this reason, tunnelling dynamics can be significantly affected and 
even suppressed because of the above-described, typically polaronic effects, and it is our 
aim to examine what consequences it should have on SB dynamics. Furthermore, in order to 
determine the range of validity of the present adiabatic treatment, we shall compare it with 
the results of some previous studies. The problem is not of purely academic interest since 
the classical nature of the phonon field can be assigned to some realistic problems such as 
small-polaron dynamics [ 13,271 or Kenkre’s so-called non-linear dimer [30-331 which was 
recently proposed as a theoretical framework for a description of the energy transfer in the 
‘stick dimer’ [34] and motion of hydrogen atoms trapped near the impurity atoms in metals 
1351. 

2. Quasi-classical approximation 

In order to achieve the above goal we have to find the equation of motion for the tunnelling 
probability P ( t )  = ( ~ ~ ( t ) ) ,  and as the first step we separate the classical large-amplitude 
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(a,) part of the phonon operators from the fluctuating part: a, = a4 - aq + a, = bq + a!. 
Here the classical phonon amplitudes U, refer to that part of the phonon field which IS 
engaged in the formation of the lattice deformation around the tunnelling particle. Under 
the above-emphasizcd (adiabatic) conditions, the lattice cannot follow the internal motion 
of the particle; so we can neglect the temporal fluctuation of aq, On the other hand, the 
complex entity-particle plus surrounding lattice distortion-represents a stable (minimum- 
energy) state whose energy is lower than that in the rigid lattice by the amount gained in the 
creation of lattice deformation. Therefore, we shall find aq by minimizing the ground-state 
(GS) energy of the system. The new operators b, (bq = a, - a,) are a small correction to 
the classical part, and their influence will be treated perturbatively. Substituting the above 
separation of phonon operators into the slow (classical) and fluctuating part of the original 
Hamiltonian, we obtain an effective spin-phonon Hamiltonian which now reads 

H = H s + H s B + H B  (2) 

where Hs denotes the effective spin Hamiltonian 

Hs = -Ao; - E U ~  E = DEB (30) 

while HsB and HB denote the interaction and the Hamiltonian, respectively, of ‘new’ 
phonons: 

Here 6 denotes a new variational parameter introduced after specifying the classical 
amplitudes as ci4 = Sh:/hwq. This is not an additional approximation but rather the 
anticipation of the explicit form of aq. It can be confirmed easily by minimizing the GS 
energy of the system (see for example the classical approximation in [6,10, 1 I]). Obviously, 
owing to the assumed classical nature of the phonons the original symmetry of the system 
is broken and the Hamiltonian of the spin subsystem is modified through the appearance of 
the symmetry-breaking term E U ~  which can significantly violate the effects of tunnelling. 

The above-proposed treatment is more flexible than that of Grigolini and co-workers 
[32,33] who also introduced the analogous shift of phonon operators but for a fixed amount 
corresponding to the ad hoc choice 6 = 1 in our approach. It obviously corresponds 
to the maximally deformed lattice with the particle energy lowered by EB and with an 
almost vanishing amplitude of internal oscillations of the particle in the weU. However, 
such a choice could be justified in the extremely sc and adiabatic limit only, while in the 
intermediate region the depth of the potential well is balanced by its kinetic energy and their 
mutual ratio is expressed by the value of the parameter 6 ranging from zero (WC) to unit (SC 
limit). Furthermore, our treatment also has some advantages with respect to the approaches 
of Feinberg and Ranninger [I31 and Kenkre and co-workers [30,31] because their non- 
linear equations no longer contain information on two-state properties of the original spin 
variables and their evolution equations should be equally valid for any spin larger than f .  

The result of the above-described procedure is the separation of the original spin- 
phonon model with arbitrary sc into two weakly interacting subsystems: the relevant 
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subsystem (spin) and irrelevant subsystem (new phonons), where the weakness of interaction 
is provided by the smallness of the quantum fluctuations bq. Therefore in deriving the 
equation of motion for the tunnelling amplitude (u,(t)) we can apply the perturbation 
procedure. The first step will be to eliminate the phonon variables from the equations 
of motion for relevant, i.e. spin, operators. For that purpose we shall use the method of 
quantum Langevin equations as interpreted by Shibata and co-workers [36-38]. Without 
going into details let us write their fundamental evolution equation for an operator A from 
the relevant system: 

A ( t )  = exp(iLr) i(Ls + (LsB)B)A(O) + exp(iLt) 
I 

X d7 eXp(-iLst)(iLSB eXp[i(k + ~B)r l iLs~)BA(o)  + K ( t )  (4) 

K ( t )  = (1 - /j)eXp[i(Ls + LB)~]&BA(O), 

Here L denotes the Liouville operator which acts as follows: iLA = (i/h)[H,A]; 
exp( i l t )  A(0) = exp(i/hHt)A(O)exp(-i/hHt). If L is supplied with some index (S, 
B or SB), it means that, in ( S ) ,  one should use that part of the total Hamiltonian (2) which 
is specified by the particular index. K ( t )  denotes the so-called fluctuating force, while 9 is 
the projection operator: /j6 = T r [ p ~ & t ) ]  = (O( l ) )B (,OB is the phonon density matrix). 
Derivation of the equations of motion is straightforward but very cumbersome and tedious; 
so we shall avoid this purely technical problem and write the final results only: 

+x = (2A/?i)uy 

Uy = -(2A/fi)uX + (2€/h)uZ - h ~ ,  + K y ( f )  (5) 
Uz = -(2€/?i)~, - ( € / h ) h ~ x  - bZ + (hS2/2A)ho t K,( t )  

where h defines the friction constant: 

(6) 

It can be calculated explicitly in the so-called short-correlation-time limit which assumes 
that the bath relaxation time is very short compared with the scale of changes in ui(t), so 
that we can extend the integration limit in (4) and (6) towards infinity. Thus we obtain 

which apart from the numerical pre-factor 2A/hQ is equivalent to the expression obtained 
by Harris and Silbey [91 in the wc limit. In our case, the biased frequency is determined 
by the strength of interaction and in the WC limit i t  should vanish so that 2A/hQ tends to 
unity and we recover the results of 191. Here C2 = ( 2 / h ) m .  The fluctuating forces 
K ,  and K, are given by 

K,(r) = 2u,"'(t) C A , [ b ,  exp(-iw,r) + b, t exp(iwqr)] 

Kr = -2uF)(t) x A 4 [ b 4  exp(-iw,t) + b_,exp(iw.,t)]. t 
4 

(8) 

4 
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Here u,”’(t) denote the solutions of the Heisenberg equations in the absence of fluctuations: 

u;”(t) = uX,[(26)’ + ( 2 A ) Z ~ ~ s ( s l t ) l / ~ s l ) 2  

+ [2Ac/Fn)’Iuz[1 - cos(Qt)]+ (2A/hQ)uY sin(Qr) 
(9) 

u?)(t) = uy cos(S2f) - (Z/hsl)(Au, - 6uZ) sin(S2f) 

uio)(t) =U,  + (6/A)uX - (6/A)ujo)(t). 

Since our main interest is the derivation of the equation for the tunnelling probability 
P ( t ) ,  let us average the set of equations (6) over the equilibrium density matrix: p = 
(1 + ux)/2 8 pe. Thus, with the initial conditions ( ~ ~ ( 0 ) )  = 1, (d;(O)) = 0 and 
(~~(0)) = ( ~ ~ ( 0 ) )  = 0, we finally obtain the set of Bloch equations 

a(ox( r ) ) /a t  = (2A/h)(uy(t)) 

a ( u y w a t  = - ( ~ A / F I ) M ~ ) )  + ( ~ ~ ( u A o )  - A ( U ~ ( O )  

a ( d f ) ) / a r  = -(26/h)(uy(t)) - V ( 4 ) )  + (e/A)(%(O)) + AoFQ/2A). 

Combining the last two equations to eliminate (U&)) and then eliminating (uy(t)), we finally 
obtain that P ( t )  satisfies the equation of motion of a driven damped harmonic oscillator: 

(10) 

p ( t )  +A@@) + Q’P(r) = 2cQAo/hzh + [(2e/h)’ - (26Q/h’)(Ao/A)] exp(-hf) (11) 

which except for the ‘driving force’ term on the right-hand side is similar to those previously 
obtained by Harris and Silbey [9] and recently by Grigolini e f  a1 [32] in the wc limit. 
However, this time our analysis can be related to both wc and sc limits. This is determined 
by the value of the variational parameter S ranging from zero to unity. Since it arises as 
a consequence of the assumed classical nature of phonons, its vanishing value should be 
related to the wc case, while 8 + 1 corresponds to the SC limit and maximally expressed 
classical nature of the phonon field. Furthermore, since so far we have neglected the time 
dependence of the classical phonon amplitudes wq which corresponds to disregarding the 
phonon kinetic energy as a first approximation, the validity of our approach demands that 
the adiabatic condition is satisfied too. In order to analyse the possibility of a localization 
transition let us write the solution of equation (1 1): 

P(r)  = A exp(-iAt) cos(fit+(o) + [(26/h’d)’-(2c/hS2)(ho/A)] exp(-At) + (2c/frQ)(ho/A) 

(12) 

where the amplitude, phase and effective tunnelling frequency satisfy 
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All information which can be obtained on the basis of the above equations is determined 
by the value of the parameter 6 which follows after minimization of the cs energy of the 
effective spin-phonon system: 

from which we obtain 

It has two solutions: the symmetry-breaking solution S = ,/1 - ( A / 2 E B ) 2  corresponding 
to non-vanishing static lattice displacement and, consequently, to non-vanishing transverse 
spin polarization ( (ur)  # 0 and (uy) # 0) and 6 = 0 which preserves the symmetry. Strictly 
speaking, because of parity conservation of the original SB model, with H being invariant 
under the canonical transformation (aq + -aq, ux -+ -ux, uy + -by and U, + uz), both 
lattice distortion and transverse polarization should disappear. However, since we have 
focused our attention on a particular region of parameter space, i.e. the sc and adiabatic 
limit, we are dealing with the case where the classical nature of phonons should appear. 
Thus, as far as the < 1 classical behaviour of phonons is more or less expressed, it 
can induce the localization of the 'particle' in the initial position. 

This limit corresponds to the sc limit which will be clear later. If this condition is 
violated, S = 0 and we have the WC regime. 

The second piece of information necessary to understand the system dynamics is 
knowledge of the friction constant and its dependence on system parameters. For that 
purpose we must specify the explicit forms of hq and wq. 

As a first example let us consider the case of point coupling with dispersionless optical 
phonons: hq = ~ ( h / 2 M N w ~ ) ' / ~ ;  wq = WO = constant. This is in fact the well known 
molecular crystal (MC) model [27]. 

The other case that we shall consider will be the short-range coupling with acoustic 
phonons via the deformation potential: Aq = i x ( ~ / 1 q l ) ( h 1 q I R o / Z M N w ~ ) ' l ~ ;  wq = colql. 
We shall call this model the ADP model [29] .  

Now, one can introduce the set of dimensionless parameters, one of them ( B )  describing 
the adiabaticity and the other (S) giving the measure of the coupling strength S = EE/h6&; 
B = 2A/h00  for the MC model and S = EB/hwEqDRo); B = 2 A / h w ~ q ~ R o  for the ADP 
model. (qD denotes the Debye cut-off quasi-momentum and RO is the lattice constant.) In 
terms of these parameters, the condition for the applicability of the classical approximation 
becomes B/4S c 1 which, together with the above-mentioned adiabatic demands ( B  >> I), 
clearly defines the sc limit. 

Let us now look at the friction constant value. For the MC model we have 

A < ~ E B  ( 1 6 4  
A z ~ E B .  ( 166) 

for [ ( A / 2 E ~ ) * ( 4 n w o E e / h ) ( i i ,  + +)WO - 4Ee/h)  

( ~ Z W E B / ~ ) ( % ,  4- fP(w - 
h =  1 
Obviously, damping has a resonant character, i.e. it exhibits a sudden jump when 00 
approaches a certain value; otherwise it is zero. However, satisfying the resonance condition 
in the sc limit demands 00 = 4 E B / h  or equivalently S = i, which contradicts the above- 
emphasized SC and adiabatic conditions; so it cannot be satisfied for (160). In contrast, in 
the WC case, resonance arises when B = 1, which is quite possible. 
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For the ADP model we have 

A =  (-) 2A ' 4 x E ~  
k n 9 ; , ~ 9 " 6 ( q - - ) ( V u + t ) d n q  2Q An me Ro 
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where n is the dimensionality of the phonon subsystem. Here n = 1 corresponds to ohmic 
dissipation, while n > 1 defines super-ohmic dissipation. (Here, the introduction of the 
Debye cut-off is the natural consequence of the transition from the summation over phonon 
quasi-momenta to the integration.) Obviously, equation (17) can never be satisfied in the 
SC limit, since the argument of the 8-function in (17) is always out of the integration range. 
That is, substituting Q defined in terms of 6 ,  we see that the disappearance of the argument 
of the &function requires that 8 E ~ / h w ~ R o  - 90 = 0, implying that S = i, which is in 
sharp contradiction to the above sc and adiabatic demands. In the weak wc case, 

Obviously, as long as 8 f 0, damping is zero and P(t) satisfies 

P ( t )  = I - 2(A/2E~)'sin*(2Eet/A) (19) 

while, in the wc regime, P ( t )  satisfies equation (12) with A = (1 + tan2p,)'/Z; tanp, = 

(A/Zfi)[I - (Ao/h)*] and fi = ,/-. 
It follows from (19) that, as long as 2(A/2Ee)' < 1, the 'particle' is localized in 

the initial position (i.e. initial well), exhibiting harmonic oscillations inside the well and 
never leaving it. The amplitude of these oscillations decreases with increase in the coupling 
strength. In (S, B )  language, the above localization condition is S 

With proper identification of the corresponding parameters (4E8 = ,y and 2A = V), 
our result is identical with that of Kenkre and Campbell [30] (cf equation (9) of [30]) which 
arises in the sc limit of their non-linear analysis. The non-dissipative character of our result 
(equation (19)) is the consequence of the fact that almost all phonons are frozen-engaged 
in the creation of the static lattice distortion-while the emission of the real phonons, the 
mechanism wzhich is the cause of the dissipation, is forbidden since the energy balance 
(mq = Q) (see equation (7)) condition is not satisfied in the SC limit. Clearly, such a picture 
can survive as long as the adiabatic limit is satisfied, which enables one to neglect temporal 
fluctuations of classical phonon amplitudes. However, the time dependence of aq is not 
the only possible manifestation of non-adiabatic effects. That is, when B decreases, lattice 
deformation begins to follow the motion of the particle instantaneously and the well known 
phenomenon of a decrease in the tunnelling frequency due to phonon dressing arises. Thus, 
in order to determine properly the validity of the present analysis, we should distinguish 
the regions in the (S, B )  plane where each particular type of behaviour prevails. 

In the wc regime the 'particle' exhibits underdamped oscillations as long as 2A/h > $A. 
When this condition is violated, the transition to the overdamped regime occurs. Using the 
explicit expression for A, we can define the overdamping condition as 

B/&. 

which means that the temperature stimulates transition to the overdamped regime. Thus, 
even when parameters of the system initially do not allow the transition to overdamping, it 
can be achieved when the temperature increases. 
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3. The range of validity 

The above results obtained without taking into account the reduction in the effective 
tunnelling frequency due to phonon dressing clearly have limited validity. Thus, to estimate 
the region of parameter space where the above predictions could apply, we need to compare 
the present results with those previously obtained without neglecting the dressing. For 
that purpose, we shall use the results of our recent paper where the simple variational 
approach known from polaron theories 1291 has been applied to study the dependence of 
A,* on the system parameters S and B and type of coupling. Because of the variational 
character of both methods it is clear that the present (semiclassical) results should be valid 
in that part of (S, E )  space where classical theory predicts lower estimates of the GS energy: 
E:? < E&”m. The term ‘source’ was borrowed from Gross [28] and it is related to the 
variational approach developed in the polaron theories [27] and later successfully applied 
in studies of the spin-phonon model [ 12.22,28,29]. Without going into the details which 
are presented in [29] let us quote 

with f, being the variational parameter satisfying 

f, = A,/[hw, + 2A exp(-x)] (22) 

where x = 2 I f q I 2  defines the degree of dressing and reduction in effective tunnelling 
frequency. According to our previous study, the dependence of Ae* on x and the system 
parameters S and B is very different for each particular type of coupling; so, at this stage, 
we must make the particular model concrete. In the case of ohmic dissipation (ADP; n = 1) 
we have that the classical approach gives lower estimates for the GS energy if the following 
condition is satisfied: 

-S-BZ/16S(-fBexp(-x)-S[1+2Bexp(-x)] .  (23) 

Let us now recall that the classical situation means the sc and adiabatic limit in which, 
according to our previous study, dressing is almost negligible (x  -+ 0). In that case, (23) 
can be written as 

{S[l +(I+2B)-”z]-$B](S[1-(1+2B)-”2]-  $51 30. (24) 

Since we are in the sc region the first multiplier in (24) is always positive and the only 
limitation arises from the other multiplier which gives 

S > a B [ l  - ( I  + 2B)-i’Z1-1. (25) 

In this case, the equality (25) defines the so-called dressing boundary; the curve in the (S, B )  
plane which separates the regions in which the classical method (i.e. the present study) gives 
better predictions for spin-phonon dynamics than the so-called ‘source’ approximation. 
Since the ’source’ method almost reproduces the known results of the PI and RG approaches 
in the appropriate limits (non-adiabatic) while having a wider domain of applicability when 
B increases [291, we can accept the present results as a reasonably good approximation for 



Dynamics of spin-boson model 737 

the me dynamics of the spin-phonon system if (25) is satisfied. Analogous reasoning for 
the WCcase leads to the condition - i B  < - & B e x p ( - x ) - S / ( 1 + 2 B e x p ( - x ) )  which can 
be satisfied in the case of non-vanishing dressing only. This means that, in the wc case, A 
should be always substitutcd by A,tr = Aexp(-x). However, since in this regime (small 
B and S), x is very small, we can consider this reduction in tunnelling frequency to be 
negligible. 

Using analogous reasoning we can find dressing boundaries for the ADP type of coupling 
for n = 2 and 3 corresponding to the so-called super-ohmic dissipation: for n = 2, 

S 2 i B ( 1  - J1 + 2 B Z / ( 1  + B )  - 2B21n(l + l / B ) ] - '  

and, for n = 3, (26) 

S 2 $ B ( I  -dl - 3B2[1 + ( B / l  + B )  - ZBln(1 i- l/B)]]-'. 

For the MC model we obtain the simple expression 

From our analysis it follows that the parameter space of the system (the (S, E )  plane) 
is divided into three regions with substantially different physical behaviours of the system. 
The boundaries of these regions are defined by the two limits S = $ B  and S = B/&. 
So for S < we encounter the WC regime where the particle exhibits underdamped 
oscillations with a transition to pure exponential decay P - exp(-Rt) when condition 
(20) is satisfied for ADP-type coupling, while having the resonant character (i.e. an abrupt 
transition to infinite damping when 2A = fh) for the MC model. Here R - (ZA)*/A defines 
the transition rate which is in full agreement with previous studies [9,21,22], while being 
in qualitative agreement with the work of Dekker I391 and Goerlich et al [40]. Concerning 
these last references, there appear to be certain differences, based on the crudeness of our 
approximation manifested in our extension of the integration boundary in equation (6) to 
infinity. In fact, in the wc limit, our bias frequency vanishes; so differences also disappear 
(cf equation (12) in [40] and equation (3.23) in [39]). Thus, as S < $ B ,  with respect to 
the localization behaviour, dissipation can cause two substantially different effects. The 
first, characterized by a damped oscillation of the transition probability P ( t ) ,  represents 
the gradual relaxation towards P ( w )  = 0 which denotes a fully delocalized state. In 
the practical application to the problem of the tunnelling dynamics of handed molecules, 
this problem is called racemization and represents the gradual relaxation of the system 
predominantly populated with just one kind of molecule (left-handed for example) towards 
the mixture of equal amounts of both kinds. When the overdamping criterion is satisfied 
and when the system is initially localized, the localized state is essentially stabilized further 
owing to the very slow relaxation of P ( t )  towards equilibrium. For < S < B/& 
we encounter, so to say, the intermediate-coupling (IC) region where,, although being 
substantially violated, tunnelling is not fully suppressed. Finally for S > E / &  the 
particle oscillates inside the initial well, never leaving it. The amplitudes of these localized 
oscillations are undamped and their amplitude vanishes as the coupling strength increases. 

Our results are given in figure 1 where we have plotted the regions of parameter space 
with the three characteristic regions where each particular type of behaviour should be 
expected. 
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Figure 1. Characteristic curves in the (S, B )  plane: curve ( I ) ,  S = $ B  wc versus IC boundilly; 
curve (Z), B l f i  sc boundary; curve U), dressing boundary. HC model: curve (4) dressing 
boundary, ADP model, n = 1; curve (3, dressing boundary, ADP model, n = 2; curve (6). 
dressing boundary, ADP model, n = 3. 

Clearly the validity of the above predictions is determined by the applicability of the 
classical approach and we estimate that our results could be accepted when conditions (25)- 
(27) are satisfied. Therefore, in figure 1, only for those points in parameter space lying above 
the so-called dressing boundaries could the above discussion apply. For the points below 
the dressing boundaries, the dynamics are determined by the reduction in the effective 
tunnelling frequency. The presence of these dressing boundaries implies a reduction in the 
validity of classical analysis and for each particular type of spin-phonon coupling there 
appears a crossing point (&: Bc) of the dressing boundary and sc boundary which together 
with the adiabatic demand ( B  > 1) define the restricted domain of applicability of the 
present approach. So, for example, for ohmic dissipation, the sc limit embraces all points 
in parameter space lying in the area B > 1 and above the dressing boundary, while the IC 
region can occur only for B > E, ( E c  N 5.7). A similar analysis for n = 2 gives Bc N 14 
and for n = 3 i t  gives B, N 15, while for the MC model it gives B, Y 21.7. 

4. Concluding remarks 

Concluding this paper, let us note that the above-presented analysis embraces some of the 
known resulls while, at the same time, being complementary to some other approaches. 
So, for example, we have recovered the results of both wc 191 and sc [30-33] analysis. 
Furthermore, comparing the present results with those obtained on the basis of approaches 
which explicitly take into account the effecfs of phonon dressing, we are able to determine 
the regions of parameter space (the (S, B )  plane) in which a particular type of system 
behaviour should occur. These results are given in figure I .  In this way, knowledge of the 
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values of system parameters S and B enables one to predict the character of the system 
dynamics and to understand the mechanisms and conditions which lead to the breakdown 
of quantum coherence in a simple TLS. 

Finally, concerning the relevance of the present concept to the understanding of the 
dynamics of some realistic systems, we believe that the above analysis could be connected 
to small-polaron and related problems such as defect motion in solids [41], stabilization of 
optical isomers embedded in crystals [42], energy transfer in the condensed phase 141 and 
self-trapping in the non-linear dimer [30,31]. If we bear in mind the possibility of tuning 
the system parameters by some external action (pressure, for example) [43], it could be 
possible to observe experimentally the transition from the free to the self-trapped state in 
order to check the predicted behaviour. 
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